General Specifications #### **GS 77J08X02-01E** FX2 Series Computing Units (Variable/Fixed Software Type) Moving Average Unit, Dead Time Unit, Velocity Unit, First Order Lug Unit, First Order Lead Unit, Velocity Limiter, Peak Holder, Bottom Holder, Analog Memory, Program Setter, Programmable Unit #### ■ General The JUXTA FX2 Series, Computing unit (Variable/ Fixed Software Type) receives a voltage input signal, applies various computing functions to it, and outputs isolated DC current or DC voltage signals to controllers or recorders. # ■ List of Computing Units Table 1. List of FX2 Series | Descriptions | Models
□: V or A | |--|---------------------| | Moving Average Unit (Fixed software type) | FX2□-MA | | Dead Time Unit (Fixed software type) | FX2□-DT | | Velocity Unit (Fixed software type) | FX2□-VC | | First Order Lug Unit (Fixed software type) | FX2□-LG | | First Order Lead Unit (Fixed software type) | FX2□-LE | | Velocity Limiter (Fixed software type) | FX2□-VL | | Peak Holder (Variable software type, with contact input for holding) | FX2□-PH | | Bottom Holder (Variable software type, with contact input for holding) | FX2□-BH | | Analog Memory (Variable software type, with contact input for holding) | FX2□-AM | | Program Setter (Variable software type) | FX2□-PS | | Programmable Unit (Variable software type, with contact input) | FX2□-FP | #### ■ Model and Suffix Codes # ■ Ordering Information Specify the Model, Suffix codes and the Input range when ordering. (Refer to "Functions" for other items which need to be specified when ordering.) Model and suffix codes: e.g. FX2A-MA-1A*B Input range: e.g. 1 to 5 V DC # ■ Input Specifications Input signal: Refer to Table 2 Table 2. Input Signals | Input signals | Model and Suffix codes | | |---|--|--| | 1 point of DC voltage signal | FX2□-MA, FX2□-DT,
FX2□-VC, FX2□-LG,
FX2□-LE, FX2□-VL | | | 1 point of DC voltage signal,
1 point of contact input | FX2□-PH, FX2□-BH,
FX2□-AM, FX2□-FP | | | 1 point of contact input | FX2□-PS | | Measuring range: Refer to Table 3 Table 3. Measuring Range | Input signal | Measuring range | |-------------------|---| | DC voltage signal | Specify within 0 to 10 V DC when voltage is applied (Span: 2 V or more) | Input resistance: 1 M Ω (100 k Ω or more during power off) Allowable applied voltage: -15 to +15 V DC Contact signal: For the models with contact inputs only Close: 200 Ω or less Open: $100 \text{ k}\Omega$ or more Contact detection: 9 V, 0.2 mA DC # Output Specifications Output signal: DC current signal or DC voltage signal Allowable load resistance: Refer to Table 4 Table 4. Output signals | Output range | Output range | |-------------------------------------|--------------------------------| | 4 to 20 mA DC: 750 Ω or less | 0 to 10 mV DC: 250 kΩ or more | | 2 to 10 mA DC: 1500 Ω or less | 0 to 100 mV DC: 250 kΩ or more | | 1 to 5 mA DC: 3000 Ω or less | 0 to 1 V DC: 2 kΩ or more | | 0 to 20 mA DC: 750 Ω or less | 0 to 10 V DC: 10 kΩ or more | | 0 to 16 mA DC: 900 Ω or less | 0 to 5 V DC: 2 kΩ or more | | 0 to 10 mA DC: 1500 Ω or less | 1 to 5 V DC: 2 kΩ or more | | 0 to 1 mA DC: 15 kΩ or less | -10 to +10 V DC: 10 kΩ or more | #### ■ Standard Performance Accuracy rating: ±0.2% of span Note that the accuracy is not guaranteed for output levels less than 0.5% of the span of 0 to X mA output range type. FX2□-FP: ±0.2% of span (when Input; %=Output; %) Response speed: 500 ms, 63% response (10 to 90%) Computation cycle: 100 ms Insulation resistance: $100 \text{ M}\Omega$ or more at 500 V DC between input and output, output and power supply, and input and power supply. Withstand voltage: 1500 V AC/min. between (input and output) and power supply. 500 V AC/min. between output and power supply. # **■ Environmental Conditions** Operating temperature range: 0 to 50 °C Operating humidity range: 5 to 90% RH (no condensation) Power supply voltage: 24 V DC±10% Effect of power supply voltage fluctuations: ±0.2% or less of span for fluctuation of 24 V DC±10% Effect of ambient temperature change: ±0.2% of span or less for a temperature change of 10 °C. Current consumption: 24 V DC 60 mA (FX2V), 82 mA (FX2A) # Mounting and Dimensions Material: ABS resin (Case body) Mounting method: Rack, Wall, or DIN rail mounting Connection: M4 screw terminal External dimensions: 72 x 24 x 127 mm (H x W x D) Weight: Approx.130 g # ■ Standard Accessories Tag number label: 1 Mounting block: 2 Mounting screw: M4 screw x 2 # **■ Custom Order Specifications** Input signal: DC current signal - Refer to Table 5 Input resistance x (Input curent) shall be within the measuring span of voltage input signal. Table 5. Acceptable Range for Input Signals | Input signal | Input resistance | Input signal | Input resistance | |----------------|------------------|---------------|------------------| | 10 to 50 mA DC | 100 Ω | 0 to 20 mA DC | 250 Ω | | 4 to 20 mA DC | 250 Ω | 0 to 16 mA DC | 250 Ω | | 2 to 10 mA DC | 500 Ω | 0 to 10 mA DC | 500 Ω | | 1 to 5 mA DC | 1 kΩ | 0 to 1 mA DC | 5 kΩ | Output signal: Refer to Table 6 Table 6. Acceptable Range for Output Signals | | Current signal | Voltage signal | |----------------|----------------|------------------| | Output range | 0 to 24 mA DC | -10 to +10 V DC | | Span | 1 to 24 mA DC | 10 mV to 20 V DC | | Zero elevation | 0 to 200% | -100 to +200% | # ■ Terminal Assignments | 2 | 3 | | | |-----|-----|--|--| | 0.0 | 000 | | | | 4 | (5) | | | | 6 | 7 | | | | FX2□-PS | | | |---------|--------------------------|--| | 1 | Start/Reset (+) | | | 2 | Do not use this terminal | | | 3 | Start/Reset (-) | | | 4 | Output (+) | | | 5 | Output (-) | | | 6 | Power supply (+) | | | 7 | Power supply (-) | | | FX | FX2□-PH, -BH, -AM, -FP | | | |------------------------------------|-------------------------------|---|------------------| | 1 | Hold (+) | | | | 2 | Input (+) | | | | 3 | 3 Input/Hold (-) 4 Output (+) | | | | 4 | | | | | 5 Output (-)
6 Power supply (+) | | | | | | | 7 | Power supply (-) | S: FX2□-MA; Moving average time setting volume FX2□-DT; Dead time setting volume FX2□-VC; Velocity computation time setting volume FX2□-LG, -LE; Time constant setting volume FX2□-VL; Velocity limit value setting volume # **■ Block Diagrams** ● FX2□ -MA, -DT, -VC, -LG, -LE, -VL #### • FX2□ -PS # ● FX2□ -PH, -BH, -AM, -FP # **■ External Dimensions** # **■** Functions # • FX2□-MA Moving Average Unit This computing unit outputs the average of 20 input data (X) sampled at intervals of one-twentieth of the moving-average time (L). At the next sampling, the unit discards the oldest data and outputs the average of the 20 data, repeating the same operation. The output between samplings is smoothed out by interpolation. #### <Example> Setting range of moving average time: 0 to 1000 sec. (0 to 1 V) with 4 significant digits, minimum unit is 1 sec. Moving average time can be set by the volume of front panel and monitored by check terminal. Accuracy of moving average and time constant setting: (±5.0% of set value) ± 5.0 sec. #### • FX2□-DT Dead Time Unit This computing unit stores the input values (X) sampled at intervals of one-twentieth of the dead time (L) into 20 buffers and outputs data (Y) by orderly shifting them after the dead time has elapsed. The output between samplings is smoothed by interpolation. $$Y = \frac{e^{-L_S}}{1 + T_S} X$$ X: Input, L: Dead time Y: Output, T: Time constant # <Example: 0% → 100% step input> Setting range of dead time: 0 to 1000 sec. (0 to 1 V) with 4 significant digits, minimum unit is 1 sec. Dead time can be set by the volume of front panel and monitored by check terminal. Accuracy of dead time and time constant setting: (±5.0% of set value) ±5.0 sec. # • FX2□-VC Velocity Unit This computing unit calculates the input velocity by subtracting the input of the last velocity computation (X_L) from the present input (X). The unit then adds a 50% bias to one-half of the obtained velocity and outputs the result (Y). The output obtained is as follows: When there is no change in input: 50% When the input has increased: 50% or more (100% when $X-X_L=100\%$) When the input has decreased: 50% or less (0% when $X-X_L=-100\%$) $$Y = \frac{X - X_L}{2} + 50\%$$ X: Present Input X_L: Input of the last velocity computation Y: Output #### <Example> Setting range of velocity computation time: 0 to 1000 sec. (0 to 1 V) with 4 significant digits, minimum unit is 1 sec. Velocity computation time can be set by the volume of front panel and monitored by check terminal. Accuracy of velocity computation and time constant setting: (±5.0% of set value) ±5.0 sec. #### • FX2□-LG First Order Lag Unit This computing unit provides a first order lag computation on input (X) with a time constant (T) and outputs the result (Y). $$Y = \frac{1}{1 + Ts} X$$ X: Input, T_S : Time constant, Y: Output # <Example: 0% → 100% step input> Setting range of time constant: 1.0 to 100.0 sec. (0.010 to 1.000 V); minimum unit is 0.1 sec. Time constant can be set by the volume of front panel and monitored by check terminal. Accuracy of time constant setting: (±5.0% of set value) ±1.0 sec. #### • FX2 □-LE First Order Lead Unit This computing unit provides a first order lead computation on input (X) with a time constant (T) and outputs the result (Y). $$Y = (1 + \frac{T_S}{1 + T_S}) X$$ X: Input, T_S: Time constant, Y: Output #### <Example: 0% → 50% step input> Setting range of time constant: 1.0 to 100.0 sec. (0.010 to 1.000 V); minimum unit is 0.1 sec. Time constant can be set by the volume of front panel and monitored by check terminal. Accuracy of time constant setting: (±5.0% of set value) ±1.0 sec. # • FX2□-VL Velocity Limiter This computing unit limits the input (X) velocity at the ascending velocity limit for a positive change, at the descending velocity limit for a negative change, and outputs the limited value (Y). When the input velocity (slope) is not more than the limit, the unit outputs the input as it is. #### <Example: $0\% \rightarrow 100\% \rightarrow 0\%$ step input> Setting range of velocity limit: 0.1 to 600.0%/min.; minimum unit is 0.1 %/min. Setting the limit at 700.0%/min. or above does not limit the input, so the unit simply outputs the input as it is (Open limit function). Velocity limit value can be set by the volume of front panel and monitored by check terminal. "0 to 1000%/min." corresponds to "0.010 to 1.000 V". Setting accuracy of velocity limit: (±5.0% of set value) ± 5%/min. #### • FX2□-PH Peak Holder This computing unit outputs the current signal or voltage signal (Y) corresponding to the peak value when receiving a voltage signal input from various converters and opening the hold-command input (contact input). If the contact input is closed, it outputs the value corresponding to the input value. #### • FX2□-BH Bottom Holder This computing unit outputs the current signal or voltage signal (Y) corresponding to the bottom value when receiving a voltage signal input from various converters and opening the hold-command input (contact input). If the contact input is closed, it outputs the value corresponding to the input value. ### • FX2□-AM Analog Memory This computing unit holds the output signal (Y) at the moment when receiving a voltage signal input from various converters and opening the hold-command input (contact input). If the contact input is closed, it outputs the value corresponding to the input value. ## • FX2□-PS Program Setter This computing unit starts the program when opening start/reset input (contact input), and outputs the isolated current or voltage signal (Y) internally generated. When closing the start/reset input, the program is reset. The output signal changes with the time lapse corresponding to the 11 time table breakpoints. Setting conditions of time table: $0.0 \text{ sec.} \le (t_0 \text{ to } t_{10}) \le 7984 \text{ sec.},$ $-10.0\% \le (Y_0 \text{ to } Y_{10}) \le 110.0\%$ $t_0 < t_1 < t_2 < t_3 < t_4 < t_5 < t_6 < t_7 < t_8 < t_9 < t_{10}$ Time breakpoints: $t_0 \text{ to } t_{10}$ Output breakpoints: $Y_0 \text{ to } Y_{10}$ Setting resolution: Time; 8 sec., Outputs; 0.1% #### <Example> #### Ordering information •Time table: Write and specify all data of t_0 to t_{10} and Y_0 to Y_{10} on the work sheet below. #### <Work Sheet> Model and suffix code: _ | Time (sec.) | | | Output (%) | | |-------------|--|-----|------------|--| | t0 | | Y0 | | | | t1 | | Y1 | | | | t2 | | Y2 | | | | t3 | | Y3 | | | | t4 | | Y4 | | | | t5 | | Y5 | | | | t6 | | Y6 | | | | t7 | | Y7 | | | | t8 | | Y8 | | | | t9 | | Y9 | | | | t10 | | Y10 | | | #### • FX2□-FP Programmable Unit Receiving a voltage signal input from various converters, this computing unit performs various computations and outputs the isolated current or voltage signal.